Part Number Hot Search : 
PDTC114 10HCB ECJZEC 2SC5344U DTA144 58004 01HCA18 10HCB
Product Description
Full Text Search
 

To Download CT1812S60ATELEG2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ceramic transient voltage suppressors smd multilayer transient voltage suppressors for telecom applications series/type: date: november 2010 ? epcos ag 2010. reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without epcos' prior express consent is prohibited.
epcos type designation system for telecom series ct 1812 k 75  tele g2 construction: ct  single chip with nickel barrier termination (agnisn) case size: 1812 tolerance for the varistor voltage: k  standard tolerance : 10% s  special tolerance maximum rms operating voltage (v rms ): 60  60 v 75  75 v 95  95 v 115  115 v special tolerance for the varistor voltage:   standard tolerance a  special tolerance telecom series taping mode: g2  taped, 330-mm reel, 13'' multilayer varistors (mlvs) telecom series page 2 of 30 please read cautions and warnings and important notes at the end of this document.
features high surge voltage capability up to 2 kv for 10/700 s (acc. to german telecom administration standards) high surge load capability acc. to iec 61000-4-5 matched to line conditions with or without superimposed ringing voltages rohs-compatible suitable for lead-free soldering pspice models available applications transient protection for:  line cards in switching exchange systems  terminal devices such as telephones, fax, modems  xdsl, pbx, dect lines design multilayer technology lack of plastic or epoxy encapsulation for flammability rating better than ul 94 v-0 termination (see ?soldering directions?):  ct types with nickel barrier terminations (agnisn), recommended for lead-free reflow and wave soldering, and compatible with tin/lead solder. v/i characteristics and derating curves v/i and derating curves are attached to the data sheet. the curves are sorted by v rms and then by case size, which is included in the type designation. single chip internal circuit available case size: eia metric 1812 4532 general technical data maximum rms operating voltage v rms,max 60 ... 115 v maximum dc operating voltage v dc,max 85 ... 150 v maximum surge current (10 pulses, 10/700 s) i surge,max 45 a maximum clamping voltage (8/20 s) v clamp,max 200 ... 360 v operating temperature t op  40/+85 c storage temperature lct/uct  40/+125 c multilayer varistors (mlvs) telecom series page 3 of 30 please read cautions and warnings and important notes at the end of this document.
temperature derating climatic category:  40/+85 c electrical specifications and ordering codes maximum ratings (t op,max = 85 c) type ordering code v rms,max v v dc,max v i surge,max (10 pulses, 10/700 s) a i surge,max (8/20 s) a w max (2 ms) mj p diss,max (2 ms) mw ct1812s60ag2 b72580t0600s172 60 85 45 400 2200 15 ct1812k75teleg2 b72580t6750k072 75 100 45 400 2500 15 ct1812s95ag2 b72580t0950s172 95 125 45 250 2800 15 ct1812k115teleg2 b72580t6111k072 115 150 45 250 3200 15 characteristics (t a = 25 c) type v v (1 ma) v d v v % v clamp,max v i clamp (8/20 s) a c typ (1 khz, 1 v) pf ct1812s60ag2 100 +19/  1 200 45 400 ct1812k75teleg2 120 10 250 45 320 ct1812s95ag2 150 +20/0 270 45 250 ct1812k115teleg2 180 10 360 45 200 notes in addition to the telecom varistors listed above, all varistors of the standard series can be used for telecom applications if the selection criteria are considered. these telecom varistors in multilayer technology are not suitable for the operation on ac mains. multilayer varistors (mlvs) telecom series page 4 of 30 please read cautions and warnings and important notes at the end of this document.
dimensional drawing dimensions in mm case size eia / mm l w h k 1812 / 4532 4.5 0.40 3.20 0.30 2.5 max. 0.25 ... 1.00 recommended solder pad layout dimensions in mm case size eia / mm a b c 1812 / 4532 3.60 1.50 3.00 delivery mode eia case size taping reel size mm packing unit pcs. type ordering code 1812 blister 330 4000 ct1812k75teleg2 b72580t6750k072 1812 blister 330 3000 ct1812k115teleg2 b72580t6111k072 1812 blister 330 3000 ct1812s95ag2 b72580t0950s172 1812 blister 330 4000 ct1812s60ag2 b72580t0600s172 multilayer varistors (mlvs) telecom series page 5 of 30 please read cautions and warnings and important notes at the end of this document.
v/i characteristics ct1812s... ct1812k... multilayer varistors (mlvs) telecom series page 6 of 30 please read cautions and warnings and important notes at the end of this document.
derating curves maximum surge current i surge,max = f (t r , pulse train) for explanation of the derating curves refer to "general technical information", chapter 2.7.2 ct1812s60ag2 ct1812k75teleg2 ct1812s95ag2 ct1812k115g2 multilayer varistors (mlvs) telecom series page 7 of 30 please read cautions and warnings and important notes at the end of this document.
taping and packing 1 taping and packing for smd components 1.1 blister tape (the taping to iec 60286-3) dimensions in mm 8-mm tape 12-mm tape 16-mm tape case size (inch/mm) case size (inch/mm) case size (inch/mm) tolerance 0508/ 1220 0612/ 1632 1012/ 2532 0603/ 1608 0506/ 1216 0805/ 2012 1206/ 3216 1210/ 3225 1812/ 4532 2220/ 5750 3225 4032 a 0 0.9 0.10 1.50 1.60 1.90 2.80 3.50 5.10 7.00 8.60 0.20 b 0 1.75 0.10 1.80 2.40 3.50 3.50 4.80 6.00 8.70 10.60 0.20 k 0 1.0 0.80 1.80 2.60 5.00 max. t 0.30 0.30 0.30 max. t 2 1.3 1.20 2.50 3.50 5.50 max. d 0 1.50 1.50 1.50 +0.10/  0 d 1 1.00 1.50 1.50 min. p 0 4.00 4.00 4.00 0.10 1) p 2 2.00 2.00 2.00 0.05 p 1 4.00 8.00 12.00 0.10 w 8.00 12.00 16.00 0.30 e 1.75 1.75 1.75 0.10 f 3.50 5.50 7.50 0.05 g 0.75 0.75 0.75 min. 1) 0.2 mm over 10 sprocket holes. multilayer varistors (mlvs) telecom series page 8 of 30 please read cautions and warnings and important notes at the end of this document.
part orientation in tape pocket for blister tape for discrete chip, case sizes 0603, 0805, 1206, 1210, 1812 and 2220 for array, case sizes 0612 for arrays 0506 and 1012 for filter array, case size 0508 additional taping information reel material polystyrol (ps) tape material polystyrol (ps) or polycarbonat (pc) or pvc tape break force min. 10 n top cover tape strength min. 10 n top cover tape peel force 0.2 to 0.6 n for 8-mm tape and 0.2 to 0.8 n for 12-mm tape at a peel speed of 300 mm/min tape peel angle angle between top cover tape and the direction of feed during peel off: 165 to 180 cavity play each part rests in the cavity so that the angle between the part and cavity center line is no more than 20 multilayer varistors (mlvs) telecom series page 9 of 30 please read cautions and warnings and important notes at the end of this document.
1.2 cardboard tape (taping to iec 60286-3) dimensions in mm 8-mm tape case size (inch/mm) case size (inch/mm) tolerance 0201/0603 0402/1005 0405/1012 0603/1608 1003/2508 0508/1220 a 0 0.38 0.05 0.60 1.05 0.95 1.00 1.60 0.20 b 0 0.68 0.05 1.15 1.60 1.80 2.85 2.40 0.20 t 0.35 0.02 0.60 0.75 0.95 1.00 0.95 max. t 2 0.4 min. 0.70 0.90 1.10 1.10 1.12 max. d 0 1.50 0.1 1.50 1.50 +0.10/  0 p 0 4.00 0.10 2) p 2 2.00 0.05 p 1 2.00 0.05 2.00 4.00 4.00 4.00 4.00 0.10 w 8.00 0.30 e 1.75 0.10 f 3.50 0.05 g 1.35 0.75 min. 2) 0.2 mm over 10 sprocket holes. multilayer varistors (mlvs) telecom series page 10 of 30 please read cautions and warnings and important notes at the end of this document.
part orientation in tape pocket for cardboard tape for discrete chip case sizes 0201, 0402, 0603 and 1003 for array case size 0405 for array case size 0508 for filter array, case size 0405 additional taping information reel material polystyrol (ps) tape material cardboard tape break force min. 10 n top cover tape strength min. 10 n top cover tape peel force 0.1 to 0.65 n at a peel speed of 300 mm/min tape peel angle angle between top cover tape and the direction of feed during peel off: 165 to 180 cavity play each part rests in the cavity so that the angle between the part and cavity center line is no more than 20 multilayer varistors (mlvs) telecom series page 11 of 30 please read cautions and warnings and important notes at the end of this document.
1.3 reel packing dimensions in mm 8-mm tape 12-mm tape 16-mm tape 180-mm reel 330-mm reel 180-mm reel 330-mm reel 330-mm reel a 180  3/+0 330  2.0 180  3/+0 330  2.0 330  2.0 w 1 8.4 +1.5/  0 8.4 +1.5/  0 12.4 +1.5/  0 12.4 +1.5/  0 16.4 +1.5/  0 w 2 14.4 max. 14.4 max. 18.4 max. 18.4 max. 22.4 max. leader, trailer multilayer varistors (mlvs) telecom series page 12 of 30 please read cautions and warnings and important notes at the end of this document.
1.4 packing units for discrete chip and array chip case size chip thickness cardboard tape blister tape ? 180-mm reel ? 330-mm reel inch/mm th w w pcs. pcs. 0201/0603 0.33 mm 8 mm  15000  0402/1005 0.6 mm 8 mm  10000  0405/1012 0.7 mm 8 mm  5000  0506/1216 0.5 mm  8 mm 4000  0508/1220 0.9 mm 8 mm 8 mm 4000  0603/1608 0.9 mm 8 mm 8 mm 4000 16000 0612/1632 0.9 mm  8 mm 3000  0805/2012 0.7 mm  8 mm 3000  0.9 mm  8 mm 3000 12000 1.3 mm  8 mm 3000  1003/2508 0.9 mm 8 mm  4000  1012/2532 1.0 mm  8 mm 2000  1206/3216 0.9 mm  8 mm 3000  1.3 mm  8 mm 3000  1.4 mm  8 mm 2000  1.6 mm  8 mm 2000  1210/3225 0.9 mm  8 mm 3000  1.3 mm  8 mm 3000  1.4 mm  8 mm 2000  1.6 mm  8 mm 2000  1812/4532 1.3 mm  12 mm 1500  1.4 mm  12 mm 1000  1.6 mm  12 mm  4000 2.3 mm  12 mm  3000 2220/5750 1.3 mm  12 mm 1500  1.4 mm  12 mm 1000  2.0 mm  12 mm  3000 2.3 mm  12 mm  3000 3225 3.2 mm  16 mm  1000 4.5 mm  16 mm  1000 4032 3.2 mm  16 mm  1000 4.5 mm  16 mm  1000 multilayer varistors (mlvs) telecom series page 13 of 30 please read cautions and warnings and important notes at the end of this document.
2 delivery mode for leaded shcv varistors standard delivery mode for shcv types is bulk. alternative taping modes (ammo pack or taped on reel) are available upon request. packing units for: type pieces sr6 2000 sr1 / sr2 1000 for types not listed in this data book please contact epcos. multilayer varistors (mlvs) telecom series page 14 of 30 please read cautions and warnings and important notes at the end of this document.
soldering directions 1 terminations 1.1 nickel barrier termination the nickel barrier layer of the silver/nickel/tin termination prevents leaching of the silver base met- allization layer. this allows great flexibility in the selection of soldering parameters. the tin pre- vents the nickel layer from oxidizing and thus ensures better wetting by the solder. the nickel bar- rier termination is suitable for all commonly-used soldering methods. multilayer ctvs: structure of nickel barrier termination 1.2 silver-palladium termination silver-palladium terminations are used for the large case sizes 1812 and 2220 and for chips in- tended for conductive adhesion. this metallization improves the resistance of large chips to ther- mal shock. in case of conductive adhesion, the silver-palladium metallization reduces susceptibility to corro- sion. silver-palladium termination can be used for smaller case sizes (only chip) for hybrid appli- cations as well. the silver-palladium termination is not approved for lead-free soldering. multilayer varistor: structure of silver-palladium termination multilayer varistors (mlvs) telecom series page 15 of 30 please read cautions and warnings and important notes at the end of this document.
1.3 silver-platinum termination silver-platinum terminations are mainly used for the large case sizes 1812 and 2220. the silver- platinum termination is approved for reflow soldering, snpb soldering and lead-free soldering with a silver containing solder paste. in case of snpb soldering, a solder paste sn62pb36ag2 is rec- ommended. for lead-free reflow soldering, a solder paste sac, e.g. sn95.5ag3.8cu0.7, is rec- ommended. multilayer varistor: structure of silver-platinum termination 2 recommended soldering temperature profiles 2.1 reflow soldering temperature profile recommended temperature characteristic for reflow soldering following jedec j-std-020d multilayer varistors (mlvs) telecom series page 16 of 30 please read cautions and warnings and important notes at the end of this document.
profile feature sn-pb eutectic assembly pb-free assembly preheat and soak - temperature min t smin 100 c 150 c - temperature max t smax 150 c 200 c - time t smin to t smax 60 ... 120 s 60 ... 180 s average ramp-up rate t smax to t p 3 c/ s max. 3 c/ s max. liquidous temperature t l 183 c 217 c time at liquidous t l 60 ... 150 s 60 ... 150 s peak package body temperature t p 1) 220 c ... 235 c 2) 245 c ... 260 c 2) time (t p ) 3) within 5 c of specified classification temperature (t c ) 20 s 3) 30 s 3) average ramp-down rate t p to t smax 6 c/ s max. 6 c/ s max. time 25 c to peak temperature maximum 6 min maximum 8 min 1) tolerance for peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. 2) depending on package thickness. for details please refer to jedec j-std-020d. 3) tolerance for time at peak profile temperature (t p ) is defined as a supplier minimum and a user maximum. note: all temperatures refer to topside of the package, measured on the package body surface. number of reflow cycles: 3 2.2 wave soldering temperature profile temperature characteristics at component terminal with dual-wave soldering multilayer varistors (mlvs) telecom series page 17 of 30 please read cautions and warnings and important notes at the end of this document.
2.3 lead-free soldering processes epcos multilayer ctvs with agnisn termination are designed for the requirements of lead-free soldering processes only. soldering temperature profiles to jedec j-std-020d, iec 60068-2-58 and zvei recommenda- tions. 3 recommended soldering methods - type-specific releases by epcos 3.1 overview reflow soldering wave soldering type case size snpb lead-free snpb lead-free ct... / cd... 0201/ 0402 approved approved no no ct... / cd... 0603 ... 2220 approved approved approved approved cn... 0603 ... 2220 approved no approved no cn...k2 1812, 2220 approved approved no no arrays 0405 ... 1012 approved approved no no esd/emi filters 0405, 0508 approved approved no no cu 3225, 4032 approved approved approved approved shcv - no no approved approved 3.2 nickel barrier and agpt terminated multilayer ctvs all epcos mlvs with nickel barrier and agpt termination are suitable and fully qualiyfied for lead- free soldering. the nickel barrier layer is 100% matte tin-plated. 3.3 silver-palladium terminated mlvs agpd-terminated mlvs are mainly designed for conductive adhesion technology on hybrid materi- al. additionally mlvs with agpd termination are suitable for reflow and wave soldering with snpb solder. note: lead-free soldering is not approved for mlvs with agpd termination. 3.4 silver-platinum terminated mlvs the silver-platinum termination is approved for reflow soldering, snpb soldering and lead-free with a silver containing solder paste. in case of snpb soldering, a solder paste sn62pb36ag2 is recommended. for lead-free reflow soldering, a solder paste sac, e.g. sn95.5ag3.8cu0.7, is recommended. multilayer varistors (mlvs) telecom series page 18 of 30 please read cautions and warnings and important notes at the end of this document.
3.5 tinned copper alloy all epcos cu types with tinned termination are approved for lead-free and snpb soldering. 3.6 tinned iron wire all epcos shcv types with tinned termination are approved for lead-free and snpb soldering. 4 solder joint profiles / solder quantity 4.1 nickel barrier termination if the meniscus height is too low, that means the solder quantity is too low, the solder joint may break, i.e. the component becomes detached from the joint. this problem is sometimes interpret- ed as leaching of the external terminations. if the solder meniscus is too high, i.e. the solder quantity is too large, the vise effect may occur. as the solder cools down, the solder contracts in the direction of the component. if there is too much solder on the component, it has no leeway to evade the stress and may break, as in a vise. the figures below show good and poor solder joints for dual-wave and infrared soldering. 4.1.1 solder joint profiles for nickel barrier termination - dual-wave soldering good and poor solder joints caused by amount of solder in dual-wave soldering. 4.1.2 solder joint profiles for nickel barrier termination / silver-palladium / silver-platinum termination - reflow soldering multilayer varistors (mlvs) telecom series page 19 of 30 please read cautions and warnings and important notes at the end of this document.
good and poor solder joints caused by amount of solder in reflow soldering. 5 conductive adhesion attaching surface-mounted devices (smds) with electrically conductive adhesives is a commer- cially attractive method of component connection to supplement or even replace conventional sol- dering methods. electrically conductive adhesives consist of a non-conductive plastic (epoxy resin, polyimide or silicon) in which electrically conductive metal particles (gold, silver, palladium, nickel, etc) are em- bedded. electrical conduction is effected by contact between the metal particles. adhesion is particularly suitable for meeting the demands of hybrid technology. the adhesives can be deposited ready for production requirements by screen printing, stamping or by dis- pensers. as shown in the following table, conductive adhesion involves two work operations fewer than soldering. reflow soldering wave soldering conductive adhesion screen-print solder paste apply glue dot screen-print conductive adhesive mount smd mount smd mount smd predry solder paste cure glue cure adhesive reflow soldering wave soldering inspect wash wash inspect inspect multilayer varistors (mlvs) telecom series page 20 of 30 please read cautions and warnings and important notes at the end of this document.
a further advantage of adhesion is that the components are subjected to virtually no temperature shock at all. the curing temperatures of the adhesives are between 120 c and 180 c, typical curing times are between 30 minutes and one hour. the bending strength of glued chips is, in comparison with that of soldered chips, higher by a fac- tor of at least 2, as is to be expected due to the elasticity of the glued joints. the lower conductivity of conductive adhesive may lead to higher contact resistance and thus re- sult in electrical data different to those of soldered components. users must pay special attention to this in rf applications. 6 solderability tests test standard test conditions sn-pb soldering test conditions pb-free soldering criteria/ test results wettability iec 60068-2-58 immersion in 60/40 snpb solder using non-activated flux at 215 3 c for 3 0.3 s immersion in sn96.5ag3.0cu0.5 solder using non- or low activated flux at 245 5 c for 3 0.3 s covering of 95% of end termination, checked by visual inspection leaching resistance iec 60068-2-58 immersion in 60/40 snpb solder using mildly activated flux without preheating at 260 5 c for 10 1 s immersion in sn96.5ag3.0cu0.5 solder using non- or low activated flux without preheating at 255 5 c for 10 1 s no leaching of contacts thermal shock (solder shock) dip soldering at 300 c/5 s dip soldering at 300 c/5 s no deterioration of electrical parameters. capacitance change: 15% tests of resistance to soldering heat for smds iec 60068-2-58 immersion in 60/40 snpb for 10 s at 260 c immersion in sn96.5ag3.0cu0.5 for 10 s at 260 c change of varistor voltage: 5% tests of resistance to soldering heat for radial leaded components (shcv) iec 60068-2-20 immersion of leads in 60/40 snpb for 10 s at 260 c immersion of leads in sn96.5ag3.0cu0.5 for 10 s at 260 c change of varistor voltage: 5% change of capacitance x7r:  5/+10% multilayer varistors (mlvs) telecom series page 21 of 30 please read cautions and warnings and important notes at the end of this document.
note: leaching of the termination effective area at the termination might be lost if the soldering temperature and/or immersion time are not kept within the recommended conditions. leaching of the outer electrode should not ex- ceed 25% of the chip end area (full length of the edge a-b-c-d) and 25% of the length a-b, shown below as mounted on substrate. as a single chip as mounted on substrate 7 notes for proper soldering 7.1 preheating and cooling according to jedec j-std-020d. please refer to chapter 2. 7.2 repair / rework manual soldering with a soldering iron must be avoided, hot-air methods are recommended for rework purposes. 7.3 cleaning all environmentally compatible agents are suitable for cleaning. select the appropriate cleaning solution according to the type of flux used. the temperature difference between the components and cleaning liquid must not be greater than 100 c. ultrasonic cleaning should be carried out with the utmost caution. too high ultrasonic power can impair the adhesive strength of the metal- lized surfaces. 7.4 solder paste printing (reflow soldering) an excessive application of solder paste results in too high a solder fillet, thus making the chip more susceptible to mechanical and thermal stress. too little solder paste reduces the adhesive strength on the outer electrodes and thus weakens the bonding to the pcb. the solder should be applied smoothly to the end surface. multilayer varistors (mlvs) telecom series page 22 of 30 please read cautions and warnings and important notes at the end of this document.
7.5 adhesive application thin or insufficient adhesive causes chips to loosen or become disconnected during curing. low viscosity of the adhesive causes chips to slip after mounting. it is advised to consult the manufacturer of the adhesive on proper usage and amounts of adhesive to use. 7.6 selection of flux used flux should have less than or equal to 0.1 wt % of halogenated content, since flux residue after soldering could lead to corrosion of the termination and/or increased leakage current on the surface of the component. strong acidic flux must not be used. the amount of flux applied should be carefully controlled, since an excess may generate flux gas, which in turn is detrimental to sol- derability. 7.7 storage of ctvss solderability is guaranteed for one year from date of delivery for multilayer varistors, ceradiodes and esd/emi filters (half a year for chips with agpd and agpt terminations) and two years for shcv and cu components, provided that components are stored in their original packages. storage temperature:  25 c to +45 c relative humidity: 75% annual average, 95% on 30 days a year the solderability of the external electrodes may deteriorate if smds and leaded components are stored where they are exposed to high humidity, dust or harmful gas (hydrogen chloride, sulfurous acid gas or hydrogen sulfide). do not store smds and leaded components where they are exposed to heat or direct sunlight. otherwise the packing material may be deformed or smds/ leaded components may stick togeth- er, causing problems during mounting. after opening the factory seals, such as polyvinyl-sealed packages, it is recommended to use the smds or leaded components as soon as possible. 7.8 placement of components on circuit board especially in the case of dual-wave soldering, it is of advantage to place the components on the board before soldering in that way that their two terminals do not enter the solder bath at different times. ideally, both terminals should be wetted simultaneously. 7.9 soldering cautions an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion and a change of electrical properties of the varistor due to the loss of contact between electrodes and termination. wave soldering must not be applied for mlvs designated for reflow soldering only. keep the recommended down-cooling rate. multilayer varistors (mlvs) telecom series page 23 of 30 please read cautions and warnings and important notes at the end of this document.
7.10 standards cecc 00802 iec 60068-2-58 iec 60068-2-20 jedec j-std-020d multilayer varistors (mlvs) telecom series page 24 of 30 please read cautions and warnings and important notes at the end of this document.
symbols and terms symbol term c line,typ typical capacitance per line c max maximum capacitance c min minimum capacitance c nom nominal capacitance d c nom tolerance of nominal capacitance c typ typical capacitance f cut-off,min minimum cut-off frequency i current i clamp clamping current i leak leakage current i leak,typ typical leakage current i pp peak pulse current i surge,max maximum surge current (also termed peak current) lct lower category temperature l typ typical inductance p diss,max maximum power dissipation p pp peak pulse power r ins insulation resistance r min minimum resistance r s resistance per line t a ambient temperature t op operating temperature t stg storage temperature t r duration of equivalent rectangular wave t resp response time uct upper category temperature v voltage v br,min minimum breakdown voltage v clamp,max maximum clamping voltage v dc,max maximum dc operating voltage (also termed working voltage) v esd,air air discharge esd capability v esd,contact contact discharge esd capability v jump maximum jump start voltage multilayer varistors (mlvs) telecom series page 25 of 30 please read cautions and warnings and important notes at the end of this document.
v rms,max maximum ac operating voltage, root-mean-square value v v varistor voltage (also termed breakdown voltage) v v,min minimum varistor voltage v v,max maximum varistor voltage d v v tolerance of varistor voltage w ld maximum load dump w max maximum energy absorption (also termed transient energy) a typ typical insertion loss lead spacing  *  maximum possible application conditions all dimensions are given in mm. the commas used in numerical values denote decimal points. multilayer varistors (mlvs) telecom series page 26 of 30 please read cautions and warnings and important notes at the end of this document.
cautions and warnings general some parts of this publication contain statements about the suitability of our ceramic transient voltage suppressor (ctvs) components (multilayer varistors (mlvs), ceradiodes, esd/emi filters, smd disk varistors (cu types), leaded transient voltage/ rfi suppressors (shcv types)) for certain areas of application, including recommendations about incorporation/design-in of these products into customer applications. the statements are based on our knowledge of typical requirements often made of our ctvs devices in the particular areas. we nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our ctvs components for a particular customer application. as a rule, epcos is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. for these reasons, it is always incumbent on the customer to check and decide whether the ctvs devices with the properties described in the product specification are suitable for use in a particular customer application. do not use epcos ctvs components for purposes not identified in our specifications, application notes and data books. ensure the suitability of a ctvs in particular by testing it for reliability during design-in. always evaluate a ctvs component under worst-case conditions. pay special attention to the reliability of ctvs devices intended for use in safety-critical applications (e.g. medical equipment, automotive, spacecraft, nuclear power plant). design notes always connect a ctvs in parallel with the electronic circuit to be protected. consider maximum rated power dissipation if a ctvs has insufficient time to cool down between a number of pulses occurring within a specified isolated time period. ensure that electrical characteristics do not degrade. consider derating at higher operating temperatures. choose the highest voltage class compatible with derating at higher temperatures. surge currents beyond specified values will puncture a ctvs. in extreme cases a ctvs will burst. if steep surge current edges are to be expected, make sure your design is as low-inductance as possible. in some cases the malfunctioning of passive electronic components or failure before the end of their service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. in applications requiring a very high level of operational safety and especially when the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention, life-saving systems, or automotive battery line applications such as clamp 30), ensure by suitable design of the application or other measures (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of such a malfunction or failure. only use ctvs components from the automotive series in safety-relevant applications. multilayer varistors (mlvs) telecom series page 27 of 30 please read cautions and warnings and important notes at the end of this document.
specified values only apply to ctvs components that have not been subject to prior electrical, mechanical or thermal damage. the use of ctvs devices in line-to-ground applications is therefore not advisable, and it is only allowed together with safety countermeasures like thermal fuses. storage only store ctvs in their original packaging. do not open the package before storage. storage conditions in original packaging: temperature  25 to +45 c, relative humidity 75% annual average, maximum 95%, dew precipitation is inadmissible. do not store ctvs devices where they are exposed to heat or direct sunlight. otherwise the packaging material may be deformed or ctvs may stick together, causing problems during mounting. avoid contamination of the ctvs surface during storage, handling and processing. avoid storing ctvs devices in harmful environments where they are exposed to corrosive gases for example (so x , cl). use ctvs as soon as possible after opening factory seals such as polyvinyl-sealed packages. solder ctvs components after shipment from epcos within the time specified:  ctvs with ni barrier termination, 12 months  ctvs with agpd and agpt termination, 6 months  shcv and cu series, 24 months handling do not drop ctvs components and allow them to be chipped. do not touch ctvs with your bare hands - gloves are recommended. avoid contamination of the ctvs surface during handling. mounting when ctvs devices are encapsulated with sealing material or overmolded with plastic material, electrical characteristics might be degraded and the life time reduced. make sure an electrode is not scratched before, during or after the mounting process. make sure contacts and housings used for assembly with ctvs components are clean before mounting. the surface temperature of an operating ctvs can be higher. ensure that adjacent components are placed at a sufficient distance from a ctvs to allow proper cooling. avoid contamination of the ctvs surface during processing. multilayer varistors (mlvs) with agpd termination are not approved for lead-free soldering. soldering complete removal of flux is recommended to avoid surface contamination that can result in an instable and/or high leakage current. use resin-type or non-activated flux. bear in mind that insufficient preheating may cause ceramic cracks. rapid cooling by dipping in solvent is not recommended, otherwise a component may crack. multilayer varistors (mlvs) telecom series page 28 of 30 please read cautions and warnings and important notes at the end of this document.
conductive adhesive gluing only multilayer varistors (mlvs) with an agpd termination are approved for conductive adhesive gluing. operation use ctvs only within the specified operating temperature range. use ctvs only within specified voltage and current ranges. environmental conditions must not harm a ctvs. only use them in normal atmospheric conditions. reducing the atmosphere (e.g. hydrogen or nitrogen atmosphere) is prohibited. prevent a ctvs from contacting liquids and solvents. make sure that no water enters a ctvs (e.g. through plug terminals). avoid dewing and condensation. epcos ctvs components are mainly designed for encased applications. under all circumstances avoid exposure to:  direct sunlight  rain or condensation  steam, saline spray  corrosive gases  atmosphere with reduced oxygen content epcos ctvs devices are not suitable for switching applications or voltage stabilization where static power dissipation is required. multilayer varistors (mlvs) are designed for esd protection and transient suppression. ceradiodes are designed for esd protection only, esd/emi filters are designed for esd and emi protection only. this listing does not claim to be complete, but merely reflects the experience of epcos ag. multilayer varistors (mlvs) telecom series page 29 of 30 please read cautions and warnings and important notes at the end of this document.
the following applies to all products named in this publication: 1. some parts of this publication contain statements about the suitability of our products for certain areas of application . these statements are based on our knowledge of typical re- quirements that are often placed on our products in the areas of application concerned. we nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application . as a rule, epcos is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. for these reasons, it is always ultimately incum- bent on the customer to check and decide whether an epcos product with the properties de- scribed in the product specification is suitable for use in a particular customer application. 2. we also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified . in customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. the warnings, cautions and product-specific notes must be observed. 4. in order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous) . useful information on this will be found in our ma- terial data sheets on the internet (www.epcos.com/material). should you have any more de- tailed questions, please contact our sales offices. 5. we constantly strive to improve our products. consequently, the products described in this publication may change from time to time . the same is true of the corresponding product specifications. please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. we also reserve the right to discontinue production and delivery of products . consequently, we cannot guarantee that all products named in this publication will always be available. the aforementioned does not apply in the case of individual agreements deviating from the fore- going for customer-specific products. 6. unless otherwise agreed in individual contracts, all orders are subject to the current ver- sion of the "general terms of delivery for products and services in the electrical in- dustry" published by the german electrical and electronics industry association (zvei) . 7. the trade names epcos, baoke, alu-x, ceradiode, csmp, cssp, ctvs, deltacap, digisimic, dssp, formfit, miniblue, minicell, mkk, mkd, mlsc, motorcap, pcc, phasecap, phasecube, phasemod, phicap, siferrit, sifi, sikorel, silvercap, simdad, simic, simid, sineformer, siov, sip5d, sip5k, thermofuse, windcap are trade- marks registered or pending in europe and in other countries. further information will be found on the internet at www.epcos.com/trademarks. important notes page 30 of 30


▲Up To Search▲   

 
Price & Availability of CT1812S60ATELEG2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X